Abstract
AbstractThis paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average
$\frac{1}{t} \int_0^t f(X_s)ds$
converges in
$\mathbb{L}^2$
towards a limiting distribution, starting from any initial distribution for the process
$(X_t)_{t \geq 0}$
. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability