Abstract
AbstractWe propose a bootstrap test for unconditional and conditional Granger-causality spectra in the frequency domain. Our test aims to detect if the causality at a particular frequency is systematically different from zero. In particular, we consider a stochastic process derived applying independently the stationary bootstrap to the original series. At each frequency, we test the sample causality against the distribution of the median causality across frequencies estimated for that process. Via our procedure, we infer about the relationship between money stock and GDP in the Euro Area during the period 1999–2017. We point out that the money stock aggregate M1 had a significant impact on economic output at all frequencies, while the opposite relationship is significant only at low frequencies.
Funder
Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献