Physiological Changes and Nutritional Value of Forage Clitoria Grown in Arid Agro-Ecosystem as Influenced by Plant Density and Water Deficit

Author:

Shaaban AhmedORCID,Mahfouz Hamdy,Megawer Ekram Ali,Saudy Hani SaberORCID

Abstract

AbstractForage crop productivity has lately reduced in countries located in arid and semi-arid regions worldwide due to intensive consumption and the successive years of drought. This problem is exacerbated by the progress of water scarcity. Thus, the current study is aimed at improving the forage productivity and quality of clitoria as a leguminous fodder crop to be involved in crop rotations under low water supply conditions. As an attempt for facing the drought issue, a two-year (SI and SII) field experiment was conducted to evaluate the influence of irrigation pattern (IP) and plant density (PD) on clitoria morpho-physiological attributes, nutritive value, productivity, and irrigation water-use efficiency (IWUE) in two growth cycles (GCI and GCII). Based on the soil water depletion method, three irrigation patterns of 100% (IP0%, full irrigation), 80% (IP20%), and 60% (IP40%) were applied. The tested plant densities were 33 (PD33), 22 (PD22), and 17 (PD17) plants m−2. Findings revealed that IP0% × PD22 was the efficient treatment for enhancing the physio-biochemical attributes. However, in SI IP0% × PD22 statistically at par (p≥0.05) with IP0% × PD33, IP20% × PD22, and IP20% × PD17 (for chlorophyll content in GCI); IP0% × PD17 and IP20% × PD22 (for leaf relative water content in GCII); and IP0% × PD33, IP20% × PD33, and IP20% × PD22 (for cell membrane stability index in GCII). Along the two seasons, IP40% × PD33 was the potent practice for producing the highest leaf: stem ratio in both GCI (2.07 and 1.78) and GCII (1.18 and 0.96). Under IP40%, PD33 treatment recorded the greatest protein content in both GCI (24.1–27.0%) and GCII (21.7–19.5%) of SI and SII equaling PD22 in GCII (21.2–18.9%) of both seasons and PD17 in both GCI (24.0%) and GCII (21.5%) of SI and GCII (19.3%) of SII. The best aggregate protein yield for SI and SII was obtained under IP20% × PD33 interaction (1.36 and 1.40 t ha−1) without significant difference (p≥0.05) with IP0% × PD33 or IP40% × PD33 interactions. The greatest aggregate dry forage yield was observed in SI under IP0% or IP20% combined with PD33 (7.77 and 7.52 t ha−1) which did not differ significantly (p≥0.05). It could be concluded that irrigation by 80% water of full irrigation was found to be an efficient water-saving tactic coupled with adjusting the plant density of 33 plants m−2, which improved clitoria forage quantitative and qualitative properties, in addition to enhancing IWUE. Since leaf relative water content and cell membrane stability index decreased and proline increased in plant tissues under deficit water, clitoria is plant considered a moderately drought tolerant. Thus, clitoria is a promising plant could be successfully grown under arid agro-ecosystems.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3