Combined Curvature and Wall Shear Stress Analysis of Abdominal Aortic Aneurysm: An Analysis of Rupture Risk Factors

Author:

Teng Biyun,Zhou Zhijun,Zhao Yu,Wang ZheORCID

Abstract

Abstract Purpose To discuss the risk factors for abdominal aortic aneurysm rupture based on geometric and hemodynamic parameters. Methods We retrospectively reviewed the clinical data of those who were diagnosed with an abdominal aortic aneurysm by computed tomography angiography at our hospital between October 2019 and December 2020. Thirty-five patients were included in the ruptured group (13 patients) and the unruptured group (22 patients). We analyzed the differences and correlations of anatomical factors and hemodynamic parameters between the two groups using computational fluid dynamics based on computed tomography angiography. Results There were significant differences in the maximum diameter [(79.847 ± 10.067) mm vs. (52.320 ± 14.682) mm, P < 0.001], curvature [(0.139 ± 0.050) vs. 0.080 (0.123 − 0.068), P = 0.021], and wall shear stress at the site of maximal blood flow impact [0.549(0.839 − 0.492) Pa vs. (1.378 ± 0.255) Pa, P < 0.001] between the ruptured and unruptured groups, respectively. And in the ruptured group, wall shear stress at the rupture site was significantly different from that at the site of maximal blood flow impact [0.025 (0.049 − 0.018) Pa vs. 0.549 (0.839 − 0.492) Pa, P = 0.001]. Then, the maximum diameter and curvature were associated with rupture (maximum diameter: OR: 1.095, P = 0.003; curvature: OR: 1.142E + 10, P = 0.012). Most importantly, curvature is negatively correlated with wall shear stress (r = − 0.366, P = 0.033). Conclusions Both curvature and wall shear stress can evaluate the rupture risk of aneurysm. Also, curvature can be used as the geometric substitution of wall shear stress.

Funder

the Medical Scientific Research Project of the Chongqing Health Planning Committee

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3