Abstract
Abstract
Purpose
To discuss the risk factors for abdominal aortic aneurysm rupture based on geometric and hemodynamic parameters.
Methods
We retrospectively reviewed the clinical data of those who were diagnosed with an abdominal aortic aneurysm by computed tomography angiography at our hospital between October 2019 and December 2020. Thirty-five patients were included in the ruptured group (13 patients) and the unruptured group (22 patients). We analyzed the differences and correlations of anatomical factors and hemodynamic parameters between the two groups using computational fluid dynamics based on computed tomography angiography.
Results
There were significant differences in the maximum diameter [(79.847 ± 10.067) mm vs. (52.320 ± 14.682) mm, P < 0.001], curvature [(0.139 ± 0.050) vs. 0.080 (0.123 − 0.068), P = 0.021], and wall shear stress at the site of maximal blood flow impact [0.549(0.839 − 0.492) Pa vs. (1.378 ± 0.255) Pa, P < 0.001] between the ruptured and unruptured groups, respectively. And in the ruptured group, wall shear stress at the rupture site was significantly different from that at the site of maximal blood flow impact [0.025 (0.049 − 0.018) Pa vs. 0.549 (0.839 − 0.492) Pa, P = 0.001]. Then, the maximum diameter and curvature were associated with rupture (maximum diameter: OR: 1.095, P = 0.003; curvature: OR: 1.142E + 10, P = 0.012). Most importantly, curvature is negatively correlated with wall shear stress (r = − 0.366, P = 0.033).
Conclusions
Both curvature and wall shear stress can evaluate the rupture risk of aneurysm. Also, curvature can be used as the geometric substitution of wall shear stress.
Funder
the Medical Scientific Research Project of the Chongqing Health Planning Committee
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献