Ground Validation Experiment and Spectral Detection Capability Evaluation of Mars Mineralogical Spectrometer (MMS) Aboard HX-1 Orbiter

Author:

Liu BinORCID,Ren Xin,Liu Dawei,Liu Jianjun,Zhang Qing,Huang Hai,Xu Rui,Wang Rong,Liu Chengyu,He Zhiping,Li Chunlai

Abstract

AbstractAs a hyperspectral imager aboard the orbiter “HX-1” of China’s first Mars mission, the Mars Mineralogical Spectrometer (MMS) is designed with hyperspectral and multispectral operation modes to survey the mineral types and their distribution on the surface of Mars, and to study the overall chemical composition and evolution history of Mars. The multispectral modes of MMS are different from hyperspectral modes on the bands selection, spatial and spectral resolution, Signal-to-Noise Ratio (SNR) etc. So the spectral detection capability of each mode of MMS is also different. The ground validation experiment of MMS is conducted to evaluate the hyperspectral and multispectral data quality and detection capabilities. The main conclusions include: (1) The measured hyperspectra of typical mineral samples obtained by MMS agree well with the data acquired by the Standard Comparison Spectrometers (SCS) under the same measurement conditions, and the spectral uncertainty between MMS and SCS is less than 7% in the key spectral ranges ($0.7\sim2.2~\upmu \text{m}$ 0.7 2.2 μm ). For some typical minerals, the absorption band positions deviation between MMS and SCS are within $0.69\sim14.86~\text{nm}$ 0.69 14.86 nm , which are within the spectral resolution limits of MMS. (2) The six sets of band combinations designed for MMS multispectral modes are slightly superior to CRISM’s multispectral mode in terms of spectral resolutions and bands selection, the water-containing minerals will be more accurately distinguished and identified, such as montmorillonite and kaolinite. Besides, the SNR of each multispectral mode is greater than 400 in the 500–2600 nm spectral range, which meets the requirements for the subtle spectral characteristics of water-containing minerals. (3) Benefiting from the MMS ground validation experiment and the experience of the OMEGA and CRISM, it is recommended that MMS first adopt the spatial continuous 52-sample or 104-sample (spatial resolution is about $0.53\sim1.06~\text{km}$ 0.53 1.06 km ) multispectral operation mode for typical minerals global mapping and finding target areas of interest. Then the 208-sample multispectral mode (spatial resolution is about $\sim265~\text{m}$ 265 m ) or 26-sample hyperspectral mode can be used to survey target areas of interest for the subtle mineral types characteristics and distribution. At last, 26-sample hyperspectral mode could be used to monitor the atmospheric composition of Mars by limb observations.

Funder

National Natural Science Foundation of China

China’s first Mars exploration program and China National Space Administration

Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3