Abstract
AbstractWe prove the local boundedness for solutions to a class of obstacle problems with non-standard growth conditions. The novelty here is that we are able to establish the local boundedness under a sharp bound on the gap between the growth exponents.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization
Reference19 articles.
1. Bella, P., Schäffner, M.: Local boundedness and harnack inequality for solutions of linear nonuniformly elliptic equations. Comm. Pure Appl. Math. 74, 0453–0477 (2021)
2. Carozza, M., Giannetti, F., Leonetti, F., di Napoli, A.P.: Pointwise bounds for minimizers of some anisotropic functionals. Nonlinear Anal. 177, 254–269 (2018)
3. Caselli, M., Eleuteri, M., di Napoli, A.P.: Regularity results for a class of obstacle problems with p, q- growth conditions. ESAIM: Control, Opt. Calculus Var. 27, 19 (2021)
4. Chlebicka, I., De Filippis, C.: Removable sets in non-uniformly elliptic problems. Annali di Mat. 199, 619–649 (2020)
5. Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst. Ser. B 11, 66–86 (2009)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献