Affiliation:
1. Dipartimento di Matematica e Applicazioni “R. Caccioppoli” , Università degli Studi di Napoli “Federico II” , Via Cintia, 80126 Napoli , Italy
Abstract
Abstract
We establish the higher fractional differentiability of bounded minimizers to a class of obstacle problems with non-standard growth conditions of the form
min
{
∫
Ω
F
(
x
,
D
w
)
𝑑
x
:
w
∈
𝒦
ψ
(
Ω
)
}
,
\min\bigg{\{}\int_{\Omega}F(x,Dw)dx:w\in\mathcal{K}_{\psi}(\Omega)\biggr{\}},
where Ω is a bounded open set of
ℝ
n
{\mathbb{R}^{n}}
,
n
≥
2
{n\geq 2}
,
the function
ψ
∈
W
1
,
p
(
Ω
)
{\psi\in W^{1,p}(\Omega)}
is a fixed function called obstacle, and
𝒦
ψ
(
Ω
)
:=
{
w
∈
W
1
,
p
(
Ω
)
:
w
≥
ψ
a.e. in
Ω
}
\mathcal{K}_{\psi}(\Omega):=\bigl{\{}w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e.%
in }\Omega\bigr{\}}
is the class of admissible functions. If the obstacle ψ is locally bounded, we prove that the gradient of solution inherits some fractional differentiability property, assuming that both the gradient of the obstacle and the mapping
x
↦
D
ξ
F
(
x
,
ξ
)
{x\mapsto D_{\xi}F(x,\xi)}
belong to some suitable Besov space.
The main novelty is that the Besov type regularity on the partial map
x
↦
D
ξ
F
(
x
,
ξ
)
{x\mapsto D_{\xi}F(x,\xi)}
is not related to the dimension n.
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献