On the Approximation of Unbounded Convex Sets by Polyhedra

Author:

Dörfler DanielORCID

Abstract

AbstractThis article is concerned with the approximation of unbounded convex sets by polyhedra. While there is an abundance of literature investigating this task for compact sets, results on the unbounded case are scarce. We first point out the connections between existing results before introducing a new notion of polyhedral approximation called $$\left( \varepsilon , \delta \right) $$ ε , δ -approximation that integrates the unbounded case in a meaningful way. Some basic results about $$\left( \varepsilon , \delta \right) $$ ε , δ -approximations are proved for general convex sets. In the last section, an algorithm for the computation of $$\left( \varepsilon , \delta \right) $$ ε , δ -approximations of spectrahedra is presented. Correctness and finiteness of the algorithm are proved.

Funder

Friedrich-Schiller-Universität Jena

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization

Reference38 articles.

1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

2. Bronshteĭn, E.M.: Approximation of convex sets by polyhedra. Sovrem. Mat. Fundam. Napravl. 22, 5–37 (2007)

3. Bronshteĭn, E.M., Ivanov, L.D.: The approximation of convex sets by polyhedra. Sibirsk. Mat. Ž. 16, 1110–1112 (1975). (1132)

4. Cheney, E.W., Goldstein, A.A.: Newton’s method for convex programming and Tchebycheff approximation. Numer. Math. 1, 254–268 (1959)

5. Ciripoi, D.: Approximation of Spectrahedral Shadows and Spectrahedral Calculus. Ph.D. thesis, Friedrich Schiller University Jena, (2019)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing the recession cone of a convex upper image via convex projection;Journal of Global Optimization;2024-03-01

2. Polyhedral Approximation of Spectrahedral Shadows via Homogenization;Journal of Optimization Theory and Applications;2024-01-17

3. Algorithms to Solve Unbounded Convex Vector Optimization Problems;SIAM Journal on Optimization;2023-10-12

4. Polytopal approximation for thrust magnitude constraints in rocket trajectory optimization;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-07-27

5. Correction to: On the Approximation of Unbounded Convex Sets by Polyhedra;Journal of Optimization Theory and Applications;2022-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3