Abstract
AbstractThe paper explores the new method of improving the workability of materials in the dieless drawing processes. The proposed method is based on the implementation of a multi-pass incremental deformation. Moreover, in each pass, strain and strain rate sensitivity of flow stress should be positive and significant. An approach based on the finite element calculation of instability coefficient of plastic deformation and simultaneous modeling of material ductility were applied for prediction of the workability. Two dieless drawing processes have been investigated. The difference was related to the heating system—induction heating and laser heating. FE simulations and experimental tests for three materials, two magnesium alloys (MgCa0.8 and MgNi19) and pure copper were performed. It was shown that the most effective increase in workability by multi-pass deformation can be achieved using laser dieless drawing. This is possible due to the shorter heating area and, as a consequence, the larger strain rate, which leads to better stability of the deformation process.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献