Process Stability and Reproducibility of the Dieless Drawing Process for AZ31 Magnesium Wires

Author:

Braatz Merle1,Bohlen Jan1,Ben Khalifa Noomane1

Affiliation:

1. Helmholtz-Zentrum Hereon

Abstract

Magnesium (Mg)-based wires are in the focus of interest for numerous applications like micro-forming technologies or medical engineering. Manufacturing thin Mg-based wires is widely realized by applying a conventional multiple pass cold wire drawing process. This requires a complex manufacturing schedule of multiple passes with intermediate heat treatments to overcome work hardening, because of the cold forming process. Especially Mg and its alloys are known for their rather low formability at room temperature associated with the hexagonal close-packed lattice structure. The dieless drawing process uses local heating to initialize a localized plastic zone under an external tensile load to achieve higher reductions in diameter in a single wire drawing pass. It can therefore present a solution for a more efficient warm manufacturing process of Mg-based wires. In this study, the stability of the steady state material flow during a dieless wire drawing process and its reproducibility was investigated. For this purpose, a variation of process parameters was selected and wire manufacturing was carried out using magnesium alloy AZ31. A single and double dieless drawing process was applied. Additionally, a conventional cold wire drawing process including a die with the same forming schedule was executed as a benchmark experiment. The results of this study show, that the dieless drawing process is not only a stable process after reaching the steady state, but it is also a reproducible and accurately adjustable process. Moreover, the dieless drawing process maintains the property profile of the starting material to a large extend.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3