Abstract
Abstract
Initiation and evolution of fatigue cracks at the interfaces in three-layer Zr–Ti/Zr–Steel composites is herein examined by in situ optical microscopy for the first time. Specimens cut out from three composite plates comprising Zr 700, Ti Gr. 1, and P265GH steel layers have been subjected to uniaxial fatigue cyclic loading. It is found that mechanical property mismatch between layers and defects at the interfaces can reduce the fatigue life of composite plates. An insight into the evolution of cracks initiated at the interfaces reveals that (1) most of the cracks grow into adjacent layers along two distinct planes, and (2) these cracks could lead to the fatigue failure of composites. One of these planes coincides with the adiabatic shear band orientation found in Ti Gr. 1 and Zr 700 layers. The interfaces in multilayer metallic composite could have excellent fatigue strength depending on their structural properties.
Funder
Narodowe Centrum Badań i Rozwoju
Opole University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献