Impact of the interface on the fatigue life of steel-based explosively welded heterostructured plates

Author:

Derda SzymonORCID,Karolczuk AleksanderORCID,Robak GrzegorzORCID,Prażmowski MariuszORCID,Paul HenrykORCID,Łagoda TadeuszORCID,Gupta Munish KumarORCID

Abstract

AbstractMelted zones, microcracks, shear bands, and elastic incompatibility of explosively welded materials are features that may initialize cracks at the interface and reduce fatigue strength. This study aims to determine the effect of interfacial defect-like structures on the fatigue strength of explosively welded corrosion-resistant plates. Cyclic axial loading was applied to seven distinct layer-by-layer compositions of Ti Gr 1, Zr 700 alloys, and carbon steels. The interfacial wave height as a metric of potential fatigue life influencing factors along with measured strain amplitude was applied as the input quantities for the Machine Learning based model, i.e. the Gaussian process for regression (GPR). This is a novel and successful application of GPR to estimate the effect of interfacial wave height on the fatigue life of explosively welded plates. For the first time, the effect of the interface feature on fatigue life was estimated quantitatively. The Digital Image Correlation technique was applied to measure the field of cyclic strain for the purpose of verifying if a single strain amplitude is representative of a heterostructured plate. It was found that interfacial wave height is an important feature and its increase by 100 µm reduces the fatigue life of analysed plates by 36%. Additionally, to validate the applicability of explosively welded plates to engineering structures under cyclic loading, the experimental fatigue lives were compared with the design curve of the American Society of Mechanical Engineers (ASME) code.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3