3D DIC-assisted residual stress measurement in 316 LVM steel processed by HE and HPT

Author:

Brynk TomaszORCID,Krawczyńska Agnieszka Teresa,Setman Daria,Pakieła Zbigniew

Abstract

AbstractA method has been developed for determining residual stress based on displacement fields near drilled holes analyzed using 3D digital image correlation. Finite element modeling was used to determine corrections for analytical equations describing displacement fields near the blind holes, which made it possible to determine the residual stress distribution over a wide range of hole depth-to-hole diameter ratios and various areas of displacement field measurements using inverse method iterative calculations. The proposed method eliminates many drawbacks of traditional procedure based on strain gauges as hole eccentricity sensitivity and requirement of the relatively large span between holes. The method and testing setup, build-up of generally available components, were used to determine the residual stress distribution for 316 LVM samples processed by two methods from the large deformation group: hydrostatic extrusion (HE) and high-pressure torsion (HPT), by drilling 1.75 and 0.58-mm-diameter blind holes, respectively. In the case of the measurements performed on the surface of a HE-processed 16 mm bar cut along its diameter, a gradual change was revealed—from a compressive to a tensile residual stress distribution (from ~ − 300 MPa in the center to 400 MPa in 4 mm distance from the edge) in the longitudinal direction, with near-zero values in the radial direction. Moreover, the method was also adapted to perform measurements on the outside surface of the bar, which gave results consistent with those taken along the radius profile (~ 600 MPa longitudinal stress). Measurements on the top surface of a cylinder 10 mm in diameter and 1 mm high processed by HPT showed a high compressive residual stress in the center and a dominant shear component for the holes drilled at different distances from the center.

Funder

National Science Center Poland

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3