Exhaust system piping made by hydroforming: relations between stresses, microstructure, mechanical properties and surface

Author:

Kucharska BarbaraORCID,Moraczyński Oskar

Abstract

Abstract The subject of research is car exhaust system piping made of chromium–nickel steel of grade AISI304L with a unique, complex shape that was obtained by hydroforming technology. The purpose of the research was to determine the relation between the microstructure features, surface condition, hardness and the stresses on the external surface as determined by the sin2ψ X-ray method. We found that the stresses were tensile and correlated with the steel hardness, i.e. they were greater where the hardness was higher. Moreover, longitudinal stresses showed a relationship with pipe wall thickness, while circumferential stresses did so only partially. According to our data, the greatest value of stress determined in the pipe amounted to 290 MPa, and was close to the yield point of the strain hardened 304L steel. As depicted via XRD and SEM examination, the pipe stress level and hardness were influenced by the transition γ→α’. Furthermore, in the region of higher stress and hardness, the amount of martensite was 10 vol.%. We also noted that the pipe’s outer surface when subjected to friction against the die shows lesser roughness compared to its inner surface upon exposure to water under pressure.

Funder

Czestochowa University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of local properties of the Fe-Si alloy subjected to mechanical and laser cutting;Archives of Electrical Engineering;2024-01-02

2. Sustainable manufacturing;Sustainable Manufacturing Processes;2023

3. A simplified toughness estimation method based on standard tensile data;International Journal of Pressure Vessels and Piping;2022-10

4. Effect of Hydroforming Drawing Cups on Thickness Variation and Surface Roughness;International Journal of Engineering Research in Africa;2022-03-15

5. Formability Prediction of Laser-Welded Stainless Steel AISI 304 and AISI 430;Metals;2021-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3