Formability Prediction of Laser-Welded Stainless Steel AISI 304 and AISI 430

Author:

Evin EmilORCID,Tomáš MiroslavORCID

Abstract

The effect of laser welding on the mechanical properties and the prediction of formability for austenitic stainless steel AISI 304 and ferritic steel AISI 430 when welded by a YLS-5000 fiber laser, were studied in the paper. The microstructure of the welded joint was analyzed using light microscopy. The mechanical properties were determined by static tensile testing. The forming limit diagrams were produced from notched samples at R5, R17, and R25 mm. The hardness values of the welded joint and the base material were determined using the Vickers method. Samples made of AISI 430 showed that the formability suffered due to laser welding. Longitudinal coarse ferrite grains were observed in the microstructure of the AISI 430 weld metal. The coarse-grained structure of the welded joint and the continuous interface along the centerline caused the failure of the AISI 430 laser-welded samples at significantly lower actual stress and strain values than were required to break the base material. No significant changes in the formability were observed in the AISI 304 samples after laser welding. The growth of dendrites was observed in the microstructure of the AISI 304 welded joint in a direction towards the centerline of the welded joint. A comparison of the experimentally determined FLD0 values and the values calculated from predictive equations showed that a better agreement was achieved for uniform elongation than for the strain hardening exponent. The manufacturability and economic efficiency of selected parts of an exhaust system by hydromechanical drawing were evaluated on the basis of the process capability index Cpk.

Funder

Scientific Grant Agency of the Ministry of Education of the Slovak Republic

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference39 articles.

1. Materials for Automotive Exhaust System;Rajadurai;Int. J. Recent Dev. Eng. Technol.,2014

2. Engineering Material Selection for Automotive Exhaust Systems Using CES Software

3. Present and future trends of stainless steel for automotive exhaust system;Inoue;Nippon Steel Tech. Rep.,2003

4. Induction brazing of thin-walled pipes from AISI 304 steel using copper-based solder

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3