Frontiers of robotic endoscopic capsules: a review

Author:

Ciuti Gastone,Caliò R.,Camboni D.,Neri L.,Bianchi F.,Arezzo A.,Koulaouzidis A.,Schostek S.,Stoyanov D.,Oddo C. M.,Magnani B.,Menciassi A.,Morino M.,Schurr M. O.,Dario P.

Abstract

Abstract Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures.

Funder

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Mechanical Engineering,General Materials Science

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Physics of micro- and nano-manipulation: Fundamentals and applications;Physics Reports;2024-11

2. Robot-assistive minimally invasive surgery: trends and future directions;International Journal of Intelligent Robotics and Applications;2024-05-06

3. MAUNet: Polyp segmentation network based on multiscale feature fusion of attention U‐shaped network structure;International Journal of Imaging Systems and Technology;2024-05

4. Polyp segmentation network based on lightweight model and reverse attention mechanisms;International Journal of Imaging Systems and Technology;2024-04-30

5. Review of the characteristics of mobile robots for health care application;International Journal of Intelligent Robotics and Applications;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3