MAUNet: Polyp segmentation network based on multiscale feature fusion of attention U‐shaped network structure

Author:

Long Jianwu1,Lin Jian1ORCID,Liu Jiayin1

Affiliation:

1. College of Computer Science and Engineering Chongqing University of Technology Chongqing China

Abstract

AbstractColorectal cancer is a prevalent malignant tumor affecting the digestive tract. Although colonoscopy remains the most effective method for colon examination, it may occasionally fail to detect polyps. In an effort to enhance the detection rate of intestinal polyps during colonoscopy, we propose MAUNet, a polyp segmentation network based on a multi‐scale feature fusion of an Attention U‐shaped network structure. Our model incorporates advanced components, including the Receptive Field Block, Reverse Attention Block, and Residual Refinement Module, mirroring the analytical process performed by medical imaging professionals. We evaluated the performance of MAUNet on five challenging datasets and conducted a comparative analysis against five state‐of‐the‐art models using six evaluation metrics. The experimental results demonstrate that MAUNet achieves varying levels of performance improvement across the five datasets. Particularly on the Kvasir dataset, the Mean Dice and Mean IOU metrics reached 91.6% and 84.3%, respectively, confirming the model's outstanding performance in polyp segmentation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3