Numerical studies on small rotor configurations with validation using acoustic wind tunnel data

Author:

Yin Jianping,Rossignol Karl-Stephane,Rottmann Lukas,Schwarz Thorsten

Abstract

AbstractThis paper addresses the acoustic and aerodynamic characteristics of small rotor configurations, including the influence of the rotor–rotor interactions. For this purpose, a Rotor/Rotor/Pylon configuration is chosen for both the test and numerical simulations. The wind tunnel experiments on various rotor configuration were performed in DLR’s Acoustic Wind Tunnel Braunschweig (AWB). The experiments involve isolated rotors, and rotors in tandem and coaxial configuration in hover and forward flight. For numerical simulations, an unsteady free wake 3D panel method (UPM) is used to account for aerodynamic non-linear effects associated with the mutual interference among the Rotor/Rotor/Pylon configurations. The effect of the pylon is simulated using potential theory in form of a panelized body. Finally, the sound propagation into the far field is calculated with DLR’s FW–H code APSIM, using UPM blade surface pressure as input. The validation effort is supported by CFD TAU steady simulations on selected hover test cases. The experiments and numerical results indicate that the noise at the blade passing frequency (BPF) and its higher harmonics is the dominant source of the noise for the present rotor selection. The extra subharmonics between two BPFs appearing in the results are caused by the small geometric discrepancy between the blades as well as the motor noise. Broadband noise is also observed in the experiment, but its contribution to the overall sound pressure is very small and can be neglected. The simulation of the acoustic scattering from the rotor support system for the isolated rotor cases indicated an influence about 1–3 dB on the overall sound pressure of the polar microphones. In both the coaxial and the tandem configuration, the acoustic interferences are particularly well visible in the numerical simulations and cause a more complex noise directivity. There is almost no change in time-averaged inflow by applying phase angles. In the coaxial condition, in hover, the phase delay between rotors does not change the maximum noise level. In forward flight, the phase delay can influence the maximum level of the noise radiation. In both coaxial and tandem configuration, the position of the downstream rotor is key for the noise radiation, and therefore, avoiding the interaction with upstream wake can reduce the noise radiation.

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3