NASA concept vehicles and the engineering of advanced air mobility aircraft

Author:

Johnson W.ORCID,Silva C.

Abstract

AbstractNASA is conducting investigations in Advanced Air Mobility (AAM) aircraft and operations. AAM missions are characterised by ranges below 300 nm, including rural and urban operations, passenger carrying as well as cargo delivery. Urban Air Mobility (UAM) is a subset of AAM and is the segment that is projected to have the most economic benefit and be the most difficult to develop. The NASA Revolutionary Vertical Lift Technology project is developing UAM VTOL aircraft designs that can be used to focus and guide research activities in support of aircraft development for emerging aviation markets. These NASA concept vehicles encompass relevant UAM features and technologies, including propulsion architectures, highly efficient yet quiet rotors, and aircraft aerodynamic performance and interactions. The configurations adopted are generic, intentionally different in appearance and design detail from prominent industry arrangements. Already these UAM concept aircraft have been used in numerous engineering investigations, including work on meeting safety requirements, achieving good handling qualities, and reducing noise below helicopter certification levels. Focusing on the concept vehicles, observations are made regarding the engineering of Advanced Air Mobility aircraft.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference101 articles.

1. Full-Envelope Aero-Propulsive Model Identification for Lift+Cruise Aircraft Using Computational Experiments

2. [15] Wachspress, D.A. , Quackenbush, T.R. and Boschitsch, A.H. First-Principles Free-Vortex Wake Analysis for Helicopters and Tiltrotors. American Helicopter Society 59th Annual Forum, Phoenix, AZ, May 2003.

3. [97] European Union Aviation Safety Agency. Proposed Means of Compliance with the Special Condition VTOL, EASA MOC SC VTOL, Issue 1, May 2020.

4. [46] Sagaga, J.D.W. and Lee, S. CFD Hover Predictions for the Side-by-Side Urban Air Taxi Concept Rotor. AIAA Paper No. 2020-2795, June 2020.

5. [100] Scott, R. A Perspective on the Affordability Challenges of eVTOL. Challenges of eVTOL, Vertical Flight Society 74th Annual Forum, Phoenix, AZ, May 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3