Assessment of hydrogen transport aircraft

Author:

Onorato G.,Proesmans P.ORCID,Hoogreef M. F. M.ORCID

Abstract

AbstractZero-carbon-dioxide-emitting hydrogen-powered aircraft have, in recent decades, come back on the stage as promising protagonists in the fight against global warming. The main cause for the reduced performance of liquid hydrogen aircraft lays in the fuel storage, which demands the use of voluminous and heavy tanks. Literature on the topic shows that the optimal fuel storage solution depends on the aircraft range category, but most studies disagree on which solution is optimal for each category. The objective of this research was to identify and compare possible solutions to the integration of the hydrogen fuel containment system on regional, short/medium- and large passenger aircraft, and to understand why and how the optimal tank integration strategy depends on the aircraft category. This objective was pursued by creating a design and analysis framework for CS-25 aircraft capable of appreciating the effects that different combinations of tank structure, fuselage diameter, tank layout, shape, venting pressure and pressure control generate at aircraft level. Despite that no large differences among categories were found, the following main observations were made: (1) using an integral tank structure was found to be increasingly more beneficial with increasing aircraft range/size. (2) The use of a forward tank in combination with the aft one appeared to be always beneficial in terms of energy consumption. (3) The increase in fuselage diameter is detrimental, especially when an extra aisle is not required and a double-deck cabin is not feasible. (4) Direct venting has, when done efficiently, a small positive effect. (5) The optimal venting pressure varies with the aircraft configuration, performance, and mission. The impact on performance from sizing the tank for missions longer than the harmonic one was also quantified.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3