Abstract
AbstractThis paper presents a general approach to compute energy optimal flight paths for unmanned aerial vehicle (UAV) in urban environments. To minimize the energy required, the flight path is optimized by exploiting local wind phenomena, i.e., upwind and tailwind areas from the airflow around buildings. A realistic wind field of a model urban environment typical for continental Europe is generated using PALM, a Large Eddy Simulation tool. The calculated wind field feeds into the flight path planning algorithm to minimize the energy required. A specifically tailored A-Star-Algorithm is used to optimize flight trajectories. The approach is demonstrated on a delivery UAV benchmark scenario. Energy optimal flight paths are compared to shortest way trajectories for 12 different scenarios. It is shown that energy can be saved significantly while flying in a city using knowledge of the current wind field.
Funder
German Federal Ministry for Economic Affairs and Climate Action
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Subject
Aerospace Engineering,Transportation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献