Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine

Author:

Wojciechowski Michał S.ORCID,Kowalczewska AnnaORCID,Colominas-Ciuró RogerORCID,Jefimow MałgorzataORCID

Abstract

AbstractTo maintain constant body temperature (Tb) over a wide range of ambient temperatures (Ta) endothermic animals require large amounts of energy and water. In hot environments, the main threat to endothermic homeotherms is insufficient water to supply that necessary for thermoregulation. We investigated flexible adjustment of traits related to thermoregulation and water conservation during acclimation to hot conditions or restricted water availability, or both, in the zebra finch, Taeniopygia guttata a small arid-zone passerine. Using indirect calorimetry, we measured changes in whole animal metabolic rate (MR), evaporative heat loss (EHL) and Tb before and after acclimation to 23 or 40 °C, with different availability of water. Additionally, we quantified changes in partitioning of EHL into respiratory and cutaneous avenues in birds exposed to 25 and 40 °C. In response to heat and water restriction zebra finches decreased MR, which together with unchanged EHL resulted in increased efficiency of evaporative heat loss. This facilitated more precise Tb regulation in heat-acclimated birds. Acclimation temperature and water availability had no effect on the partitioning of EHL into cutaneous or respiratory avenues. At 25 °C, cutaneous EHL accounted for ~ 60% of total EHL, while at 40 °C, its contribution decreased to ~ 20%. Consistent among-individual differences in MR and EHL suggest that these traits, provided that they are heritable, may be a subject to natural selection. We conclude that phenotypic flexibility in metabolic heat production associated with acclimation to hot, water-scarce conditions is crucial in response to changing environmental conditions, especially in the face of current and predicted climate change.

Funder

National Science Center, Poland

Nicolaus Copernicus University

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3