Abstract
Abstract
There are well-known criteria on the potential and field-space geometry for determining if slow-roll, slow-turn, multi-field inflation is possible. However, even though it has been a topic of much recent interest, slow-roll, rapid-turn inflation only has such criteria in the restriction to two fields. In this work, we generalize the two-field, rapid-turn inflationary attractor to an arbitrary number of fields. We quantify a limit, which we dub extreme turning, in which rapid-turn solutions may be found efficiently and develop methods to do so. In particular, simple results arise when the covariant Hessian of the potential has an eigenvector in close alignment with the gradient — a situation we find to be common and we prove generic in two-field hyperbolic geometries. We verify our methods on several known rapid-turn models and search two type-IIA constructions for rapid-turn trajectories. For the first time, we are able to efficiently search for these solutions and even exclude slow-roll, rapid-turn inflation from one potential.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献