Non-standard neutrino interactions in light mediator models at reactor experiments

Author:

Dutta Bhaskar,Ghosh SumitORCID,Li Tianjun,Thompson Adrian,Verma Ankur

Abstract

Abstract Compared to other neutrino sources, the huge anti-neutrino fluxes at nuclear reactor based experiments empower us to derive stronger bounds on non-standard interactions of neutrinos with electrons mediated by light scalar/vector mediators. At neutrino energy around 200 keV reactor anti-neutrino flux is at least an order of magnitude larger compared to the solar flux. The atomic and crystal form factors of the detector materials related to the details of the atomic structure becomes relevant at this energy scale as the momentum transfers would be small. Non-standard neutrino-electron interaction mediated by light scalar/vector mediator arises naturally in many low-scale models. We also propose one such new model with a light scalar mediator. Here, we investigate the parameter space of such low-scale models in reactor based neutrino experiments with low threshold Ge and Si detectors, and find the prospect of probing/ruling out the relevant parameter space by finding the projected sensitivity at 90% confidence level by performing a χ2-analysis. We find that a detector capable of discriminating between electron recoil and nuclear recoil signal down to a very low threshold such as 5 eV placed in reactor based experiment would be able to probe a larger region in parameter space compared to the previously explored region. A Ge (Si) detector with 10 kg-yr exposure and 1 MW reactor anti-neutrino flux would be able to probe the scalar and vector mediators with masses below 1 keV for coupling products $$ \sqrt{g_{\nu }{g}_e} $$ g ν g e ∼ 1 × 106 (9.5 × 107) and 1 × 107 (8 × 108), respectively.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference126 articles.

1. Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

2. SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

3. KamLAND collaboration, First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].

4. T2K collaboration, Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

5. Double Chooz collaboration, Indication of reactor $$ {\overline{\nu}}_e $$ disappearance in the Double Chooz experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3