Abstract
Abstract
The Unruh effect has been investigated from the point of view of the quantum statistical Zubarev density operator in space with the Minkowski metric. Quantum corrections of the fourth order in acceleration to the energy-momentum tensor of real and complex scalar fields, and Dirac field are calculated. Both massless and massive fields are considered. The method for regularization of discovered infrared divergences for scalar fields is proposed. The calculated corrections make it possible to substantiate the Unruh effect from the point of view of the statistical approach, and to explicitly show its universality for various quantum field theories of massless and massive fields. The obtained results exactly coincide with the ones obtained earlier by calculation of the vacuum aver- age of energy-momentum tensor in a space with a conical singularity. Thus, the duality of two methods for describing an accelerated medium is substantiated. One may also speak about the emergence of geometry with conical singularity from thermodynamics. In particular, the polynomiality of the energy-momentum tensor and the absence of higher-order corrections in acceleration can be explicitly demonstrated.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献