Is the Euclidean path integral always equal to the thermal partition function?

Author:

Diakonov D. V.ORCID

Abstract

Abstract The Euclidean path integral is compared to the thermal (canonical) partition function in curved static space-times. It is shown that if spatial sections are non-compact and there is no Killing horizon, the logarithms of these two quantities differ only by a term proportional to the inverse temperature, that arises from the vacuum energy. When spatial sections are bordered by Killing horizons the Euclidean path integral is not equal to the thermal partition function. It is shown that the expression for the Euclidean path integral depends on which integral is taken first: over coordinates or over momenta. In the first case the Euclidean path integral depends on the scattering phase shift of the mode and it is UV diverge. In the second case it is the total derivative and diverge on the horizon. Furthermore we demonstrate that there are three different definitions of the energy, and the derivative with respect to the inverse temperature of the Euclidean path integral does not give the value of any of these three types of energy. We also propose the new method of computation of the Euclidean path integral that gives the correct equality between the Euclidean path integral and thermal partition function for non-compact spaces with and without Killing horizon.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3