Abstract
Abstract
We study the bilinear and higher-order fermion condensates in 4-dimensional SU(N) gauge theories with a single Dirac fermion in a general representation. Augmented with a mixed anomaly between the 0-form discrete chiral, 1-form center, and 0-form baryon number symmetries (BC anomaly), we sort out theories that admit higher-order condensates and vanishing fermion bilinears. Then, the BC anomaly is utilized to prove, in the absence of a topological quantum field theory, that nonvanishing fermion bilinears are inevitable in infrared-gapped theories with 2-index (anti)symmetric fermions. We also contrast the BC anomaly with the 0-form anomalies and show that it is the former anomaly that determines the infrared physics; we argue that the BC anomaly lurks deep to the infrared while the 0-form anomalies are just variations of local terms. We provide evidence of this assertion by studying the BC anomaly in vector-like theories compactified on a small spacial circle. These theories are weakly-coupled, under analytical control, and they admit a dual description in terms of abelian photons that determine the deep infrared dynamics. We show that the dual photons talk directly to the 1-form center symmetry in order to match the BC anomaly, while the 0-form anomalies are variations of local terms and are matched by fiat. Finally, we study the fate of the BC anomaly in the compactified theories when they are held at a finite temperature. The effective field theory that describes the low-energy physics is 2-dimensional. We show that the BC anomaly cascades from 4 to 2 dimensions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference48 articles.
1. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
2. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
3. D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].
4. Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies, and deconfinement in quantum antiferromagnets, Phys. Rev. B 97 (2018) 054418 [arXiv:1706.05731] [INSPIRE].
5. T. Sulejmanpasic and Y. Tanizaki, C-P-T anomaly matching in bosonic quantum field theory and spin chains, Phys. Rev. B 97 (2018) 144201 [arXiv:1802.02153] [INSPIRE].
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献