Abstract
Abstract
We study 4-dimensional SU(N) gauge theory with one adjoint Weyl fermion and fundamental matter — either bosonic or fermionic. Symmetries, their ’t Hooft anomalies, and the Vafa-Witten-Weingarten theorems strongly constrain the possible bulk phases. The first part of the paper is dedicated to a single fundamental fermion or boson. As long as the adjoint Weyl fermion is massless, this theory always possesses a $$ {\mathbb{Z}}_{2N}^{\chi } $$
ℤ
2
N
χ
chiral symmetry, which breaks spontaneously, supporting N vacua and domain walls between them for a generic mass of the matter fields. We argue, however, that the domain walls generically undergo a phase transition, and we establish the corresponding 3d gauge theories on the walls. The rest of the paper is dedicated to studying the multi-flavor fundamental matter. Here, the phases crucially depend on the ratio of the number of colors and the number of fundamental flavors. We also discuss the limiting scenarios of heavy adjoint and fundamentals, which align neatly with our current understanding of QCD and $$ \mathcal{N} $$
N
= 1 super Yang-Mills theory.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献