Quantum gravity bounds on $$ \mathcal{N} $$ = 1 effective theories in four dimensions

Author:

Martucci Luca,Risso Nicolò,Weigand Timo

Abstract

Abstract We propose quantum gravitational constraints on effective four-dimensional theories with $$ \mathcal{N} $$ N = 1 supersymmetry. These Swampland constraints arise by demanding consistency of the worldsheet theory of a class of axionic, or EFT, strings whose existence follows from the Completeness Conjecture of quantum gravity. Modulo certain assumptions, we derive positivity bounds and quantization conditions for the axionic couplings to the gauge and gravitational sector at the two- and four-derivative level, respectively. We furthermore obtain general bounds on the rank of the gauge sector in terms of the gravitational couplings to the axions. We exemplify how these bounds rule out otherwise consistent effective supergravity theories as theories of quantum gravity. Our derivations of the quantum gravity bounds are tested and further motivated in concrete string theoretic settings. In particular, this leads to a sharper version of the bound on the gauge group rank in F-theory on elliptic four-folds with a smooth base, which improves the known geometrical Kodaira bounds. We furthermore provide a detailed derivation of the EFT string constraints in heterotic string compactifications including higher derivative corrections to the effective action and apply the bounds to M-theory compactifications on G2 manifolds.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On global symmetries and Fayet–Iliopoulos terms;Physics Letters B;2024-09

2. Cosmological dynamics of string theory axion strings;Physical Review D;2024-08-19

3. Wormholes in the axiverse, and the species scale;Journal of High Energy Physics;2024-07-25

4. On classical de Sitter solutions and parametric control;Journal of High Energy Physics;2024-06-18

5. Rigid vacua with Brane Supersymmetry Breaking;Journal of High Energy Physics;2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3