Cosmology from confinement?

Author:

Van Raamsdonk Mark

Abstract

Abstract We describe a class of holographic models that may describe the physics of certain four-dimensional big-bang/big-crunch cosmologies. The construction involves a pair of 3D Euclidean holographic CFTs each on a homogeneous and isotropic space M coupled at either end of an interval ℐ to a Euclidean 4D CFT on M × ℐ with many fewer local degrees of freedom. We argue that in some cases, when the size of M is much greater than the length of ℐ, the theory flows to a confining three-dimensional field theory on M in the infrared, and this is reflected in the dual description by the asymptotically AdS spacetimes dual to the two 3D CFTs joining up in the IR to give a Euclidean wormhole. The Euclidean construction can be reinterpreted as generating a state of the Lorentzian 4D CFT on M × time whose dual includes the physics of a big-bang/big-crunch cosmology. When M is ℝ3, we can alternatively analytically continue one of the ℝ3 directions to get an eternally traversable four-dimensional planar wormhole. We suggest explicit microscopic examples where the 4D CFT is $$ \mathcal{N} $$ N = 4 SYM theory and the 3D CFTs are superconformal field theories with opposite orientation. In this case, the two geometries dual to the pair of 3D SCFTs can be understood as a geometrical version of a brane-antibrane pair, and the tendency of the geometries to connect up is related to the standard instability of brane-antibrane systems.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed universes in two dimensional gravity;SciPost Physics;2024-08-14

2. Suggestions of decreasing dark energy from supernova and BAO data;Journal of Cosmology and Astroparticle Physics;2024-06-01

3. End of the world perspective to BCFT;The European Physical Journal C;2024-05-28

4. Binary AdS black holes coupled to a bath in Type IIB;Journal of High Energy Physics;2024-05-10

5. String cosmology: From the early universe to today;Physics Reports;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3