Comments on wormholes, ensembles, and cosmology

Author:

Van Raamsdonk Mark

Abstract

Abstract Certain closed-universe big-bang/big-crunch cosmological spacetimes may be obtained by analytic continuation from asymptotically AdS Euclidean wormholes, as emphasized by Maldacena and Maoz. We investigate how these Euclidean wormhole spacetimes and their associated cosmological physics might be described within the context of AdS/CFT. We point out that a holographic model for cosmology proposed recently in arXiv:1810.10601 can be understood as a specific example of this picture. Based on this example, we suggest key features that should be present in more general examples of this approach to cosmology. The basic picture is that we start with two non-interacting copies of a Euclidean holographic CFT associated with the asymptotic regions of the Euclidean wormhole and couple these to auxiliary degrees of freedom such that the original theories interact strongly in the IR but softly in the UV. The partition function for the full theory with the auxiliary degrees of freedom can be viewed as a product of partition functions for the original theories averaged over an ensemble of possible sources. The Lorentzian cosmological spacetime is encoded in a wavefunction of the universe that lives in the Hilbert space of the auxiliary degrees of freedom.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closed universes in two dimensional gravity;SciPost Physics;2024-08-14

2. Non-trivial saddles in microscopic description of black holes;Journal of High Energy Physics;2024-07-12

3. Closed FRW holography: a time-dependent ER=EPR realization;Journal of High Energy Physics;2024-05-17

4. Small Schwarzschild de Sitter black holes, the future boundary and islands;Journal of High Energy Physics;2024-05-02

5. String cosmology: From the early universe to today;Physics Reports;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3