Abstract
AbstractWe show how to combine in a natural way (i.e., without any test nor switch) the conservative and non-conservative formulations of an hyperbolic system that has a conservative form. This is inspired from two different classes of schemes: the residual distribution one (Abgrall in Commun Appl Math Comput 2(3): 341–368, 2020), and the active flux formulations (Eyman and Roe in 49th AIAA Aerospace Science Meeting, 2011; Eyman in active flux. PhD thesis, University of Michigan, 2013; Helzel et al. in J Sci Comput 80(3): 35–61, 2019; Barsukow in J Sci Comput 86(1): paper No. 3, 34, 2021; Roe in J Sci Comput 73: 1094–1114, 2017). The solution is globally continuous, and as in the active flux method, described by a combination of point values and average values. Unlike the “classical” active flux methods, the meaning of the point-wise and cell average degrees of freedom is different, and hence follow different forms of PDEs; it is a conservative version of the cell average, and a possibly non-conservative one for the points. This new class of scheme is proved to satisfy a Lax-Wendroff-like theorem. We also develop a method to perform non-linear stability. We illustrate the behaviour on several benchmarks, some quite challenging.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
INRIA
University of Zurich
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Applied Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献