Some Remarks About Conservation for Residual Distribution Schemes

Author:

Abgrall Rémi1ORCID

Affiliation:

1. Institut für Mathematik & Computational Science , Universität Zürich , Winterthurerstr. 190, CH-8057 Zürich , Switzerland

Abstract

Abstract We are interested in the discretisation of the steady version of hyperbolic problems. We first show that all the known schemes (up to our knowledge) can be rephrased in a common framework. Using this framework, we then show they flux formulation, with an explicit construction of the flux, and thus are locally conservative. This is well known for the finite volume schemes or the discontinuous Galerkin ones, much less known for the continuous finite element methods. We also show that Tadmor’s entropy stability formulation can naturally be rephrased in this framework as an additional conservation relation discretisation, and using this, we show some connections with the recent papers [13, 20, 18, 19]. This contribution is an enhanced version of [4].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference28 articles.

1. R. Abgrall, Toward the ultimate conservative scheme: Following the quest, J. Comput. Phys. 167 (2001), no. 2, 277–315.

2. R. Abgrall, Essentially non-oscillatory residual distribution schemes for hyperbolic problems, J. Comput. Phys. 214 (2006), no. 2, 773–808.

3. R. Abgrall, A residual distribution method using discontinuous elements for the computation of possibly non-smooth flows, Adv. Appl. Math. Mech. 2 (2010), no. 1, 32–44.

4. R. Abgrall, On a class of high order schemes for hyperbolic problems, Proceedings of the International Conference of Mathematicians (ICM 2014). Vol. IV: Invited Lectures, KM Kyung Moon SA, Seoul (2014), 699–726.

5. R. Abgrall, High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices, J. Sci. Comput. 73 (2017), no. 2–3, 461–494.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3