High-Order Method with Moving Frames to Compute the Covariant Derivatives of Vectors on General 2D Curved Surfaces

Author:

Chun SehunORCID

Abstract

AbstractThe covariant derivative is a generalization of differentiating vectors. The Euclidean derivative is a special case of the covariant derivative in Euclidean space. The covariant derivative gathers broad attention, particularly when computing vector derivatives on curved surfaces and volumes in various applications. Covariant derivatives have been computed using the metric tensor from the analytically known curved axes. However, deriving the global axis for the domain has been mathematically and computationally challenging for an arbitrary two-dimensional (2D) surface. Consequently, computing the covariant derivative has been difficult or even impossible. A novel high-order numerical scheme is proposed for computing the covariant derivative on any 2D curved surface. A set of orthonormal vectors, known as moving frames, expand vectors to compute accurately covariant derivatives on 2D curved surfaces. The proposed scheme does not require the construction of curved axes for the metric tensor or the Christoffel symbols. The connectivity given by the Christoffel symbols is equivalently provided by the attitude matrix of orthonormal moving frames. Consequently, the proposed scheme can be extended to the general 2D curved surface. As an application, the Helmholtz‐Hodge decomposition is considered for a realistic atrium and a bunny.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3