Deep learning for whole-body medical image generation
Author:
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s00259-021-05413-0.pdf
Reference17 articles.
1. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.
2. Dar SU, et al. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans Med Imaging. 2019;38(10):2375–88.
3. Armanious K, et al. Unsupervised medical image translation using Cycle-MedGAN. In 2019 27th European Signal Processing Conference (EUSIPCO). 2019. IEEE.
4. Leynes AP, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59(5):852–8.
5. Armanious K, et al. Independent attenuation correction of whole body [18 F] FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Res. 2020;10:1–9.
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Clinical performance of deep learning-enhanced ultrafast whole-body scintigraphy in patients with suspected malignancy;BMC Medical Imaging;2024-09-09
2. Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs;Magnetic Resonance Materials in Physics, Biology and Medicine;2024-08-21
3. Clinical performance of deep learning enhanced ultra-fast whole-body scintigraphy in patients with suspected malignancy;2024-08-19
4. Feasibility of Multimodal Artificial Intelligence Using GPT-4 Vision for the Classification of Middle Ear Disease: Qualitative Study and Validation;JMIR AI;2024-05-31
5. Current Applications of PET/MR: Part I: Technical Basics and Preclinical/Clinical Applications;Canadian Association of Radiologists Journal;2024-05-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3