Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks

Author:

Armanious Karim,Hepp Tobias,Küstner Thomas,Dittmann Helmut,Nikolaou Konstantin,La Fougère Christian,Yang Bin,Gatidis SergiosORCID

Abstract

Abstract Background Attenuation correction (AC) of PET data is usually performed using a second imaging for the generation of attenuation maps. In certain situations however—when CT- or MR-derived attenuation maps are corrupted or CT acquisition solely for the purpose of AC shall be avoided—it would be of value to have the possibility of obtaining attenuation maps only based on PET information. The purpose of this study was to thus develop, implement, and evaluate a deep learning-based method for whole body [18F]FDG-PET AC which is independent of other imaging modalities for acquiring the attenuation map. Methods The proposed method is investigated on whole body [18F]FDG-PET data using a Generative Adversarial Networks (GAN) deep learning framework. It is trained to generate pseudo CT images (CTGAN) based on paired training data of non-attenuation corrected PET data (PETNAC) and corresponding CT data. Generated pseudo CTs are then used for subsequent PET AC. One hundred data sets of whole body PETNAC and corresponding CT were used for training. Twenty-five PET/CT examinations were used as test data sets (not included in training). On these test data sets, AC of PET was performed using the acquired CT as well as CTGAN resulting in the corresponding PET data sets PETAC and PETGAN. CTGAN and PETGAN were evaluated qualitatively by visual inspection and by visual analysis of color-coded difference maps. Quantitative analysis was performed by comparison of organ and lesion SUVs between PETAC and PETGAN. Results Qualitative analysis revealed no major SUV deviations on PETGAN for most anatomic regions; visually detectable deviations were mainly observed along the diaphragm and the lung border. Quantitative analysis revealed mean percent deviations of SUVs on PETGAN of − 0.8 ± 8.6% over all organs (range [− 30.7%, + 27.1%]). Mean lesion SUVs showed a mean deviation of 0.9 ± 9.2% (range [− 19.6%, + 29.2%]). Conclusion Independent AC of whole body [18F]FDG-PET is feasible using the proposed deep learning approach yielding satisfactory PET quantification accuracy. Further clinical validation is necessary prior to implementation in clinical routine applications.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3