Multi-task learning and joint refinement between camera localization and object detection

Author:

Wang Junyi,Qi Yue

Abstract

AbstractVisual localization and object detection both play important roles in various tasks. In many indoor application scenarios where some detected objects have fixed positions, the two techniques work closely together. However, few researchers consider these two tasks simultaneously, because of a lack of datasets and the little attention paid to such environments. In this paper, we explore multi-task network design and joint refinement of detection and localization. To address the dataset problem, we construct a medium indoor scene of an aviation exhibition hall through a semi-automatic process. The dataset provides localization and detection information, and is publicly available at https://drive.google.com/drive/folders/1U28zkuN4_I0dbzkqyIAKlAl5k9oUK0jI?usp=sharing for benchmarking localization and object detection tasks. Targeting this dataset, we have designed a multi-task network, JLDNet, based on YOLO v3, that outputs a target point cloud and object bounding boxes. For dynamic environments, the detection branch also promotes the perception of dynamics. JLDNet includes image feature learning, point feature learning, feature fusion, detection construction, and point cloud regression. Moreover, object-level bundle adjustment is used to further improve localization and detection accuracy. To test JLDNet and compare it to other methods, we have conducted experiments on 7 static scenes, our constructed dataset, and the dynamic TUM RGB-D and Bonn datasets. Our results show state-of-the-art accuracy for both tasks, and the benefit of jointly working on both tasks is demonstrated.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3