Robust and efficient edge-based visual odometry

Author:

Yan Feihu,Li Zhaoxin,Zhou Zhong

Abstract

AbstractVisual odometry, which aims to estimate relative camera motion between sequential video frames, has been widely used in the fields of augmented reality, virtual reality, and autonomous driving. However, it is still quite challenging for state-of-the-art approaches to handle low-texture scenes. In this paper, we propose a robust and efficient visual odometry algorithm that directly utilizes edge pixels to track camera pose. In contrast to direct methods, we choose reprojection error to construct the optimization energy, which can effectively cope with illumination changes. The distance transform map built upon edge detection for each frame is used to improve tracking efficiency. A novel weighted edge alignment method together with sliding window optimization is proposed to further improve the accuracy. Experiments on public datasets show that the method is comparable to state-of-the-art methods in terms of tracking accuracy, while being faster and more robust.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3