Visual exploration of Internet news via sentiment score and topic models

Author:

Han Songye,Ye Shaojie,Zhang Hongxin

Abstract

AbstractAnalyzing and understanding Internet news are important for many applications, such as market sentiment investigation and crisis management. However, it is challenging for users to interpret a massive amount of unstructured text, to dig out its accurate meaning, and to spot noteworthy news events. To overcome these challenges, we propose a novel visualization-driven approach for analyzing news text. We first collect Internet news from different sources and encode sentences into a vector representation suitable for input to a neural network, which calculates a sentiment score, to help detect news event patterns. A subsequent interactive visualization framework allows the user to explore the development of and relationships between Internet news topics. In addition, a method for detecting news events enables users and domain experts to interactively explore the correlations between market sentiment, topic distribution, and event patterns. We use this framework to provide a web-based interactive visualization system. We demonstrate the applicability and effectiveness of our proposed system using case studies involving blockchain news.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference37 articles.

1. Wu, Y. C.; Liu, S. X.; Yan, K.; Liu, M. C.; Wu, F. Z. OpinionFlow: Visual analysis of opinion diffusion on social media. IEEE Transactions on Visualization and Computer Graphic. Vol. 20, No. 12, 1763–1772, 2014.

2. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprin. arXiv:1810.04805, 2018.

3. Gers, F. A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. In: Proceedings of the 9th International Conference on Artificial Neural Networks, 850–855, 1999.

4. Blei, D. M.; Ng, A. Y.; Jordan, M. I. Latent dirichlet allocation. Journal of Machine Learning Researc. Vol. 3, 993–1022, 2003.

5. Liu, X.; Tang, K. Z.; Hancock, J., Han, J. W.; Song, M., Xu, R.; Pokorny, B. A text cube approach to human, social and cultural behavior in the twitter stream. In: Social Computing, Behavioral-Cultural Modeling and Prediction. Lecture Notes in Computer Science, Vol. 7812. Greenberg, A. M.; Kennedy, W. G.; Bos, N. D. Eds. Springer Berlin Heidelberg, 321–330, 2013.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3