Learning to compose diversified prompts for image emotion classification

Author:

Deng Sinuo,Wu Lifang,Shi Ge,Xing Lehao,Jian Meng,Xiang Ye,Dong Ruihai

Abstract

AbstractImage emotion classification (IEC) aims to extract the abstract emotions evoked in images. Recently, language-supervised methods such as contrastive language-image pretraining (CLIP) have demonstrated superior performance in image understanding. However, the underexplored task of IEC presents three major challenges: a tremendous training objective gap between pretraining and IEC, shared suboptimal prompts, and invariant prompts for all instances. In this study, we propose a general framework that effectively exploits the language-supervised CLIP method for the IEC task. First, a prompt-tuning method that mimics the pretraining objective of CLIP is introduced, to exploit the rich image and text semantics associated with CLIP. Subsequently, instance-specific prompts are automatically composed, conditioning them on the categories and image content of instances, diversifying the prompts, and thus avoiding suboptimal problems. Evaluations on six widely used affective datasets show that the proposed method significantly outperforms state-of-the-art methods (up to 9.29% accuracy gain on the EmotionROI dataset) on IEC tasks with only a few trained parameters. The code is publicly available at https://github.com/dsn0w/PT-DPC/for research purposes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3