A survey on deep geometry learning: From a representation perspective

Author:

Xiao Yun-Peng,Lai Yu-Kun,Zhang Fang-Lue,Li Chunpeng,Gao Lin

Abstract

AbstractResearchers have achieved great success in dealing with 2D images using deep learning. In recent years, 3D computer vision and geometry deep learning have gained ever more attention. Many advanced techniques for 3D shapes have been proposed for different applications. Unlike 2D images, which can be uniformly represented by a regular grid of pixels, 3D shapes have various representations, such as depth images, multi-view images, voxels, point clouds, meshes, implicit surfaces, etc. The performance achieved in different applications largely depends on the representation used, and there is no unique representation that works well for all applications. Therefore, in this survey, we review recent developments in deep learning for 3D geometry from a representation perspective, summarizing the advantages and disadvantages of different representations for different applications. We also present existing datasets in these representations and further discuss future research directions.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference120 articles.

1. Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine Vol. 34, No. 4, 18–42, 2017.

2. Ahmed, E.; Saint, A.; Shabayek, A. E. R.; Cherenkova, K.; Das, R.; Gusev, G.; Aouada, D.; Ottersten, B. Deep learning advances on different 3D data representations: A survey. arXiv preprint arXiv:1808.01462, 1, 2018.

3. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3D point clouds: A survey. arXiv preprint arXiv:1912.12033, 2019.

4. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems, 1097–1105, 2012.

5. LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In: Proceedings of the IEEE International Symposium on Circuits and Systems, 253–256, 2010.

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3