G2MF-WA: Geometric multi-model fitting with weakly annotated data

Author:

Zhang Chao,Lu Xuequan,Hotta Katsuya,Yang Xi

Abstract

AbstractIn this paper we address the problem of geometric multi-model fitting using a few weakly annotated data points, which has been little studied so far. In weak annotating (WA), most manual annotations are supposed to be correct yet inevitably mixed with incorrect ones. SuchWA data can naturally arise through interaction in various tasks. For example, in the case of homography estimation, one can easily annotate points on the same plane or object with a single label by observing the image. Motivated by this, we propose a novel method to make full use of WA data to boost multi-model fitting performance. Specifically, a graph for model proposal sampling is first constructed using the WA data, given the prior that WA data annotated with the same weak label has a high probability of belonging to the same model. By incorporating this prior knowledge into the calculation of edge probabilities, vertices (i.e., data points) lying on or near the latent model are likely to be associated and further form a subset or cluster for effective proposal generation. Having generated proposals, a-expansion is used for labeling, and our method in return updates the proposals. This procedure works in an iterative way. Extensive experiments validate our method and show that it produces noticeably better results than state-of-the-art techniques in most cases.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference30 articles.

1. Fischler, M. A.; Bolles, R. C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM Vol. 24, No. 6, 381–395, 1981.

2. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. In: Proceedings of the 7th IEEE International Conference on Computer Vision, 377–384, 1999.

3. Delong, A.; Osokin, A.; Isack, H. N.; Boykov, Y. Fast approximate energy minimization with label costs. International Journal of Computer Vision Vol. 96, No. 1, 1–27, 2012.

4. Isack, H.; Boykov, Y. Energy-based geometric multimodel fitting. International Journal of Computer Vision Vol. 97, No. 2, 123–147, 2012.

5. Amayo, P.; Pinies, P.; Paz, L. M.; Newman, P. Geometric multi-model fitting with a convex relaxation algorithm. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8138–8146, 2018.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3