Outlier Detection by Energy Minimization in Quantized Residual Preference Space for Geometric Model Fitting

Author:

Zhang Yun1,Yang Bin1,Zhao Xi2,Wu Shiqian3ORCID,Luo Bin2,Zhang Liangpei2

Affiliation:

1. CNNC Wuhan Nuclear Power Operation Technology Co., Ltd., Wuhan 430223, China

2. The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Luo Jia Shan, Wuhan 430072, China

3. Institute of Robotics and Intelligent Systems (IRIS), Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Outliers significantly impact the accuracy of geometric model fitting. Previous approaches to handling outliers have involved threshold selection and scale estimation. However, many scale estimators assume that the inlier distribution follows a Gaussian model, which often does not accurately represent cases in geometric model fitting. Outliers, defined as points with large residuals to all true models, exhibit similar characteristics to high values in quantized residual preferences, thus causing outliers to cluster away from inliers in quantized residual preference space. In this paper, we leverage this consensus among outliers in quantized residual preference space by extending energy minimization to combine model error and spatial smoothness for outlier detection. The outlier detection process based on energy minimization follows an alternate sampling and labeling framework. Subsequently, an ordinary energy minimization method is employed to optimize inlier labels, thereby following the alternate sampling and labeling framework. Experimental results demonstrate that the energy minimization-based outlier detection method effectively identifies most outliers in the data. Additionally, the proposed energy minimization-based inlier segmentation accurately segments inliers into different models. Overall, the performance of the proposed method surpasses that of most state-of-the-art methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3