1. Khorrami, P.; Paine, T. L.; Brady, K.; Dagli, C.; Huang, T. S. How deep neural networks can improve emotion recognition on video data. In: Proceedings of the IEEE International Conference on Image Processing, 619–623, 2016.
2. Kim, M.; Kumar, S.; Pavlovic, V.; Rowley, H. Face tracking and recognition with visual constraints in realworld videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.
3. Forczmański, P.; Nowosielski, A. Multi-view data aggregation for behaviour analysis in video surveillance systems. In: Computer Vision and Graphics. Lecture Notes in Computer Science, Vol. 9972. Chmielewski, L.; Datta, A.; Kozera, R.; Wojciechowski, K. Eds. Springer Cham, 462–473, 2016.
4. Kagan, D.; Chesney, T.; Fire, M. Using data science to understand the film industry’s gender gap. arXiv preprint arXiv:1903.06469, 2019.
5. Lv, J.; Wu, B.; Zhou, L. L.; Wang, H. StoryRoleNet: Social network construction of role relationship in video. IEEE Access Vol. 6, 25958–25969, 2018.