InSocialNet: Interactive visual analytics for role—event videos

Author:

Pan Yaohua,Niu Zhibin,Wu Jing,Zhang Jiawan

Abstract

AbstractRole–event videos are rich in information but challenging to be understood at the story level. The social roles and behavior patterns of characters largely depend on the interactions among characters and the background events. Understanding them requires analysis of the video contents for a long duration, which is beyond the ability of current algorithms designed for analyzing short-time dynamics. In this paper, we propose InSocialNet, an interactive video analytics tool for analyzing the contents of role–event videos. It automatically and dynamically constructs social networks from role–event videos making use of face and expression recognition, and provides a visual interface for interactive analysis of video contents. Together with social network analysis at the back end, InSocialNet supports users to investigate characters, their relationships, social roles, factions, and events in the input video. We conduct case studies to demonstrate the effectiveness of InSocialNet in assisting the harvest of rich information from role–event videos. We believe the current prototype implementation can be extended to applications beyond movie analysis, e.g., social psychology experiments to help understand crowd social behaviors.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference37 articles.

1. Khorrami, P.; Paine, T. L.; Brady, K.; Dagli, C.; Huang, T. S. How deep neural networks can improve emotion recognition on video data. In: Proceedings of the IEEE International Conference on Image Processing, 619–623, 2016.

2. Kim, M.; Kumar, S.; Pavlovic, V.; Rowley, H. Face tracking and recognition with visual constraints in realworld videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–8, 2008.

3. Forczmański, P.; Nowosielski, A. Multi-view data aggregation for behaviour analysis in video surveillance systems. In: Computer Vision and Graphics. Lecture Notes in Computer Science, Vol. 9972. Chmielewski, L.; Datta, A.; Kozera, R.; Wojciechowski, K. Eds. Springer Cham, 462–473, 2016.

4. Kagan, D.; Chesney, T.; Fire, M. Using data science to understand the film industry’s gender gap. arXiv preprint arXiv:1903.06469, 2019.

5. Lv, J.; Wu, B.; Zhou, L. L.; Wang, H. StoryRoleNet: Social network construction of role relationship in video. IEEE Access Vol. 6, 25958–25969, 2018.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3