Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory

Author:

Paudel SulavORCID,Lin Po-An,Hoover Kelli,Felton Gary W.,Rajotte Edwin G.

Abstract

AbstractThe effect of temperature on insect-plant interactions in the face of changing climate is complex as the plant, its herbivores and their interactions are usually affected differentially leading to an asymmetry in response. Using experimental warming and a combination of biochemical and herbivory bioassays, the effects of elevated temperatures and herbivore damage (Helicoverpa zea) on resistance and tolerance traits of Solanum lycopersicum var. Better boy (tomato), as well as herbivory performance and salivary defense elicitors were examined. Insects and plants were differentially sensitive towards warming within the experimental temperature range. Herbivore growth rate increased with temperature, whereas plants growth as well as the ability to tolerate stress measured by photosynthesis recovery and regrowth ability were compromised at the highest temperature regime. In particular, temperature influenced the caterpillars’ capacity to induce plant defenses due to changes in the amount of a salivary defense elicitor, glucose oxidase (GOX). This was further complexed by the temperature effects on plant inducibility, which was significantly enhanced at an above-optimum temperature; this paralleled with an increased plants resistance to herbivory but significantly varied between previously damaged and undamaged leaves. Elevated temperatures produced asymmetry in species’ responses and changes in the relationship among species, indicating a more complicated response under a climate change scenario.

Funder

United States Agency for International Development

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Ecology, Evolution, Behavior and Systematics,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3