Tag N’ Train: a technique to train improved classifiers on unlabeled data

Author:

Amram OzORCID,Suarez Cristina MantillaORCID

Abstract

Abstract There has been substantial progress in applying machine learning techniques to classification problems in collider and jet physics. But as these techniques grow in sophistication, they are becoming more sensitive to subtle features of jets that may not be well modeled in simulation. Therefore, relying on simulations for training will lead to sub-optimal performance in data, but the lack of true class labels makes it difficult to train on real data. To address this challenge we introduce a new approach, called Tag N’ Train (TNT), that can be applied to unlabeled data that has two distinct sub-objects. The technique uses a weak classifier for one of the objects to tag signal-rich and background-rich samples. These samples are then used to train a stronger classifier for the other object. We demonstrate the power of this method by applying it to a dijet resonance search. By starting with autoencoders trained directly on data as the weak classifiers, we use TNT to train substantially improved classifiers. We show that Tag N’ Train can be a powerful tool in model-agnostic searches and discuss other potential applications.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference73 articles.

1. ATLAS collaboration, Exotic physics searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults (2020).

2. ATLAS collaboration, Higgs and diboson searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults (2020).

3. CMS collaboration, Cms exotica public physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO (2020).

4. CMS collaboration, Cms beyond-two-generations (b2g) public physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G (2020).

5. LHCb collaboration, Publications of the qcd, electroweak and exotica working group, http:// lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html (2020).

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3