Abstract
AbstractCollective behavior is widely regarded as a hallmark property of living and intelligent systems. Yet, many examples are known of simple physical systems that are not alive, which nonetheless display collective behavior too, prompting simple physical models to often be adopted to explain living collective behaviors. To understand collective behavior as it occurs in living examples, it is important to determine whether or not there exist fundamental differences in how non-living and living systems act collectively, as well as the limits of the intuition that can be built from simpler, physical examples in explaining biological phenomenon. Here, we propose a framework for comparing non-living and living collectives as a continuum based on their information architecture: that is, how information is stored and processed across different degrees of freedom. We review diverse examples of collective phenomena, characterized from an information-theoretic perspective, and offer views on future directions for quantifying living collective behaviors based on their informational structure.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Ecology, Evolution, Behavior and Systematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献