Digital Twins, Virtual Devices, and Augmentations for Self-Organising Cyber-Physical Collectives

Author:

Casadei RobertoORCID,Pianini DaniloORCID,Viroli MirkoORCID,Weyns Danny

Abstract

The engineering of large-scale cyber-physical systems (CPS) increasingly relies on principles from self-organisation and collective computing, enabling these systems to cooperate and adapt in dynamic environments. CPS engineering also often leverages digital twins that provide synchronised logical counterparts of physical entities. In contrast, sensor networks rely on the different but related concept of virtual device that provides an abstraction of a group of sensors. In this work, we study how such concepts can contribute to the engineering of self-organising CPSs. To that end, we analyse the concepts and devise modelling constructs, distinguishing between identity correspondence and execution relationships. Based on this analysis, we then contribute to the novel concept of “collective digital twin” (CDT) that captures the logical counterpart of a collection of physical devices. A CDT can also be “augmented” with purely virtual devices, which may be exploited to steer the self-organisation process of the CDT and its physical counterpart. We underpin the novel concept with experiments in the context of the pulverisation framework of aggregate computing, showing how augmented CDTs provide a holistic, modular, and cyber-physically integrated system view that can foster the engineering of self-organising CPSs.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Declarative Macro-Programming of Collective Systems with Aggregate Computing: An Experience Report;Proceedings of the 26th International Symposium on Principles and Practice of Declarative Programming;2024-09-09

2. Editorial: Understanding and engineering cyber-physical collectives;Frontiers in Robotics and AI;2024-05-06

3. Fluidware Meets Digital Twins;Internet of Things;2024

4. Envisioning Digital Practices in the Metaverse: A Methodological Perspective;Future Internet;2023-12-06

5. Smart home for enhanced healthcare: exploring human machine interface oriented digital twin model;Multimedia Tools and Applications;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3