The effects of information overload on online conversation dynamics

Author:

Gunaratne Chathika,Baral Nisha,Rand William,Garibay IvanORCID,Jayalath Chathura,Senevirathna Chathurani

Abstract

AbstractThe inhibiting effects of information overload on the behavior of online social media users, can affect the population-level characteristics of information dissemination through online conversations. We introduce a mechanistic, agent-based model of information overload and investigate the effects of information overload threshold and rate of information loss on observed online phenomena. We find that conversation volume and participation are lowest under high information overload thresholds and mid-range rates of information loss. Calibrating the model to user responsiveness data on Twitter, we replicate and explain several observed phenomena: (1) Responsiveness is sensitive to information overload threshold at high rates of information loss; (2) Information overload threshold and rate of information loss are Pareto-optimal and users may experience overload at inflows exceeding 30 notifications per hour; (3) Local abundance of small cascades of modest global popularity and local scarcity of larger cascades of high global popularity explains why overloaded users receive, but do not respond to large, highly popular cascades; 4) Users typically work with 7 notifications per hour; 5) Over-exposure to information can suppress the likelihood of response by overloading users, contrary to analogies to biologically-inspired viral spread. Reconceptualizing information spread with the mechanisms of information overload creates a richer representation of online conversation dynamics, enabling a deeper understanding of how (dis)information is transmitted over social media.

Funder

Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Modelling and Simulation,General Computer Science,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3