Author:
Khayrullina Adelya,van Hooff Twan,Alanis Ruiz Claudio,Blocken Bert,van Heijst GertJan
Abstract
AbstractThis paper presents a numerical study on the required momentum flux ratio to prevent air curtain breakthrough in case of cross-curtain (i.e. cross-jet) pressure gradients. 2D steady Reynolds-averaged Navier-Stokes (RANS) CFD simulations with the RNG k-ε turbulence model are employed for jet Reynolds numbers ranging from 5,000 to 30,000. First, the computational model is validated based on particle image velocimetry (PIV) measurements. Second, the influence of several jet parameters on the separation efficiency is evaluated for a moderate cross-jet pressure difference of 10 Pa. These are the ratio of the jet discharge momentum flux to the jet cross-flow momentum flux (momentum flux ratio), the jet height-to-width ratio and the jet discharge angle. Finally, the minimum deflection modulus to prevent jet breakthrough and the corresponding momentum flux ratio by an analytical equation and by CFD are compared. The results show that, for the configuration under study: (1) jets with the smallest height-to-width ratios (β = 18) provide the highest separation efficiency; (2) inclined jets with discharge angles α0 = 5° and 10° provide slightly higher separation efficiency than straight jets (α0 = 0°) and jets with α0 = 20°; (3) the maximum modified separation efficiency is reached at lower momentum flux ratios for jets with smaller height-to-width ratios and for inclined jets; (4) the analytical and CFD values of the optimal momentum flux ratio differ with up to 31.2%. This study shows how the separation efficiency of air curtains can be improved by adjusting certain jet parameters.
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Reference44 articles.
1. Alanis Ruiz C, van Hooff T, Blocken B, Heijst GJF (2018). CFD analysis of the effect of pressure gradients on the separation efficiency of a generic air curtain. In: Proceedings of Roomvent&Ventilation (REHVA 2018), Helsinki, Finland, pp. 241–246.
2. ANSYS (2013). ANSYS Fluent 15.0. User’s Guide. ANSYS Inc.
3. Van Belleghem M, Verhaeghe G, T’Joen C, Huisseune H, De Jaeger P, De Paepe M (2012). Heat transfer through vertically downwardblowing single-jet air curtains for cold rooms. Heat Transfer Engineering, 33: 1196–1206.
4. Blocken B (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91: 219–245.
5. Blocken B (2018). LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Building Simulation, 11: 821–870.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献